0%

Combat Effectiveness Detection using YOLOv8 and Tensorflow.js

love
tensorflow.js


Combat Effectveness Detection application right in your browser. Serving YOLOv8 in browser using tensorflow.js
with webgl backend.

DEMO

Check it!

Setup

1
2
3
git clone https://github.com/dengbuqi/Combat-Effectiveness-Detection_yolov8-tfjs
cd Combat-Effectiveness-Detection_yolov8-tfjs
yarn install #Install dependencies

Scripts

1
2
yarn start # Start dev server
yarn build # Build for productions

Model

YOLOv8n model converted to tensorflow.js.

1
2
used model : yolov8n
size : 13 Mb

Use another model

Use another YOLOv8 model.

  1. Export YOLOv8 model to tfjs format. Read more on the official documentation

    1
    2
    3
    4
    5
    6
    7
    from ultralytics import YOLO

    # Load a model
    model = YOLO("yolov8n.pt") # load an official model

    # Export the model
    model.export(format="tfjs")
  2. Copy yolov8*_web_model to ./public

  3. Update modelName in App.jsx to new model name

    1
    2
    3
    4
    ...
    // model configs
    const modelName = "yolov8*"; // change to new model name
    ...
  4. Done! 😊

Reference

heartbeat-js + FaceAPI heart pulse rate monitoring

This project combines the heartbeat-js and FaceAPI
By detecting the human face using FaceAPI, we can estimate the heart pulse rate using rPPG method implemented by hearbeat-js project.

Demo

Check the demo here~

Welcome to Hexo! This is your very first post. Check documentation for more info. If you get any problems when using Hexo, you can find the answer in troubleshooting or you can ask me on GitHub.

Quick Start

Create a new post

1
$ hexo new "My New Post"

More info: Writing

Run server

1
$ hexo server

More info: Server

Generate static files

1
$ hexo generate

More info: Generating

Deploy to remote sites

1
$ hexo deploy

More info: Deployment