0%

Combat Effectiveness(CE) Detection

Combat Effectiveness Detection using YOLOv8 and Tensorflow.js

love
tensorflow.js


Combat Effectveness Detection application right in your browser. Serving YOLOv8 in browser using tensorflow.js
with webgl backend.

DEMO

Check it!

Setup

1
2
3
git clone https://github.com/dengbuqi/Combat-Effectiveness-Detection_yolov8-tfjs
cd Combat-Effectiveness-Detection_yolov8-tfjs
yarn install #Install dependencies

Scripts

1
2
yarn start # Start dev server
yarn build # Build for productions

Model

YOLOv8n model converted to tensorflow.js.

1
2
used model : yolov8n
size : 13 Mb

Use another model

Use another YOLOv8 model.

  1. Export YOLOv8 model to tfjs format. Read more on the official documentation

    1
    2
    3
    4
    5
    6
    7
    from ultralytics import YOLO

    # Load a model
    model = YOLO("yolov8n.pt") # load an official model

    # Export the model
    model.export(format="tfjs")
  2. Copy yolov8*_web_model to ./public

  3. Update modelName in App.jsx to new model name

    1
    2
    3
    4
    ...
    // model configs
    const modelName = "yolov8*"; // change to new model name
    ...
  4. Done! 😊

Reference

If you like my, Donate here.